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We study the Anderson model in which a configuration with a doublet is hybridized with another with a
singlet and a triplet. We calculate the conductance through the system as a function of temperature and bias
voltage near the quantum critical line for which the system is exactly solvable. The results explain recent
transport measurements in a single-molecule quantum dot.
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I. INTRODUCTION

When the wave function is forced to evolve continuously
between two competing ground states, a quantum phase tran-
sition �QPT� takes place between these two states At the
transition, the length scale of quantum fluctuations becomes
infinite and exotic states of condensed matter are expected.1

Recently, several remarkable features of a QPT have been
observed in C60 quantum dots �QD’s� with even occupancy
inserted in a nanoscale constriction.2 In the last few years
there has been a great interest in systems of quantum dots
because of the possible technological applications and also
because they constitute ideal systems with a single magnetic
impurity in which several parameters can be tuned.

When the QD has an odd number of electrons and the
Coulomb repulsion U is large enough, the conductance at
zero bias is increased below a characteristic Kondo tempera-
ture TK as a consequence of the Kondo effect. This is a usual
feature of single-electron transistors built with semiconduc-
tor QD’s or single molecules3,4 and is well understood in
terms of the simplest ordinary Anderson model �OAM� in
which a configuration with a doublet is hybridized with a
singlet. In a dot with an even number of electrons, there are
two competing states for the ground-state configuration: a
singlet in which two particles occupy the lowest level �say
�00�=s↑

†s↓
†�0�� and a triplet in which one electron is promoted

to the next level and coupled ferromagnetically ��11�
= p↑

†s↑
†�0� and its SU�2� partners� due to the strong Hund

coupling.5 The simplest Anderson model which describes the
system mixes these four states with a doublet ����=s�

† �0�� by
promoting a particle �electron or hole� to one of the leads.6,7

This is the singlet-triplet Anderson model �STAM� which
had been used to describe valence fluctuating Tm impurities
in a cubic environment.8

This model has a quantum phase transition from a singlet
to a doublet ground state as the energy of the triplet is
decreased.6,8 When the triplet is well below the other states,
there is a partial screening of the spin 1 that explains the
zero-bias Kondo peak observed experimentally in this
situation.9,10 On the other �singlet� side of the transition,
there is a dip in the conductance6,7 that has also been ob-
served experimentally.2,7

In this paper, we show that the experimental observations
in C60 QD’s can be understood in terms of this model and its

QPT. The differential conductance dI /dV as a function of
temperature T and bias voltage V has been measured at both
sides of the transition.2 On the singlet side of the transition, a
dip in the conductance at V=0 is observed in agreement with
theoretical expectations6,7 as well as nonequilibrium mea-
surements performed in carbon nanotubes.7 On the other side
of the transition, dI /dV as a function of V shows a structure
with three peaks that has not been quantitatively explained
yet. As the temperature T is decreased, the zero-bias conduc-
tance G�T� first increases then shows a shoulder or a plateau
and then increases again. As stressed by the authors, this
behavior is still not understood.2 The last two figures of our
paper are the theoretical counterparts of these experimental
results. The main qualitative features are reproduced. A more
quantitative agreement would require a fine tuning of the
parameters which is beyond the scope of this paper. We pro-
vide an interpretation for the observed behavior.

II. THE MODEL

The STAM assumes infinite U and contains two neighbor-
ing charge configurations in the QD: dn and dn+1 with n and
n+1 particles. Without loss of generality we can assume n to
be even, performing an electron-hole transformation if nec-
essary. Then the dn configuration contains a singlet �SM�
= �00�, where S is the spin and M its projection, and a triplet
�1M�, �M =−1, 0 or 1�, while the dn+1 configuration consists
of a doublet denoted by its spin 1/2 projection ���. We intro-
duce the following creation operators for a particle in the
dot11

ds�
† = ����00� ,

dt↑
† = − ��↑��10� + �2�↓��1 − 1��/�3,

dt↓
† = ��↓��10� + �2�↑��11��/�3. �1�

The operators ds�
† and dt�

† hybridize via matrix elements V�k
s

and V�k
t with the conduction states c�k� of two conducting

leads �=L �left� or R �right� that transport the current
through the QD, leading to the Hamiltonian
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H = Es�00��00� + Et	
M

�1M��1M� + Ed	
�

������

+ 	
�k�

��V�k
s ds�

† + V�k
t dt�

† �c�k� + H.c.� + 	
�k�

��kc�k�
† c�k�.

�2�

We assume VLk
s VRk

t =VLk
t VRk

s , so that only one conduction
channel 
	�k�V�k

� c�k� ��=s or t� hybridizes with the dot
states. In general, also the orthogonal linear combination of
c�k� plays a role and “screens” the remaining doublet ground
state when the localized triplet is well below the singlet,
leading to a singlet ground state.12,13 However, the energy
scale involved in this second screening T� �which depends
exponentially on a small coupling constant13� might be very
small. As discussed in Ref. 13, this is likely the case of
previous experiments,9,10 as well as those in C60 QD’s:2 the
theory in the general case12,13 predicts that the zero-bias con-
ductance G�T� should decrease at very low temperatures and
dI /dV should also decrease for the smallest applied bias volt-
ages V in contrast to the observations. This indicates that T�

is smaller than the smallest temperature in the experiments.
The STAM with only one conduction channel also de-

scribes the mixing between the low-lying states of the 4f12

and 4f13 configurations in a cubic crystal field.8 For Et
→+�, the model reduces to the OAM. For Es→+�, the
model describes valence fluctuations between two magnetic
configurations.14 In both limits, for constant density of con-
duction states and hybridizations, the model is exactly solv-
able �by the Bethe ansatz� and the ground state is a singlet
�doublet� in the first �second� case.14 Thus, the model has a
QPT as a function of Es−Et. The position of the transition
depends on the other parameters of the model, leading to a
quantum critical surface that can be determined by calculat-
ing the magnetic susceptibility at T→0 using numerical
renormalization group �NRG�.8 However, if �Vt�2=3�Vs�2, the
transition takes place exactly at Es−Et=0, independently of
the value of Ed. In addition, along this line, the model can be
mapped into an OAM plus a free spin 1/2.8 We will use these
results to control the distance to the QCP.

III. APPROXIMATIONS AND EQUATION
FOR THE CURRENT

As discussed for example in Ref. 15 the calculation of
nonequilibrium properties of a strongly correlated system is
a particular challenge for theory. A recent extension of the
numerical renormalization group for the nonequilibrium case
seems promising but is not fully developed yet.16 For the
OAM, the noncrossing approximation �NCA� �Ref. 17� and
renormalized perturbation theory in U �Refs 18 and 19� have
been useful. However, the latter is very difficult to extend to
the STAM. The so-called poor man’s scaling works well
when either eV or the magnetic field energy is larger than
kTK �Ref. 20� and has been successfully extended for a
model similar to the STAM on the singlet side of the QPT.7

However, this method ceases to be valid near the quantum
critical surface for small V. Instead, the NCA can be ex-
tended to more general Anderson models, like those appro-

priate for Ce compounds,21 Co impurities on Ag and Cu,22 or
systems of two quantum dots out of equilibrium.23

In this paper, we extend the NCA to the STAM out of
equilibrium. We introduce auxiliary bosons, one for the sin-
glet state and three for the triplets, and auxiliary fermions for
the doublet, in analogy to the SU�N��SU�M� generalization
of the Anderson model.24 The spectral densities of the opera-
tors d��

† defined by Eq. �1� for the given spins �d
s��� and

�d
t ��� are determined by convolutions from those of the aux-

iliary particles. The current is given by25

I =
A	e

h
� d��
s�d

s��� + 
t�d
t �����fL��� − fR���� , �3�

where 
�=
R
�+
L

� with 
�
�=2		k�V�k

� �2���−�k� are assumed
to be independent of � within a bandwidth D and zero else-
where, the asymmetry parameter is A=4
R

�
L
� / �
R

�+
L
��2 �in-

dependent of ��, and f���� is the Fermi function with the
chemical potential �� of the corresponding lead.

IV. RESULTS

For the numerical evaluations, we consider the case in
which the ground-state configuration has an even number of
particles �Es ,EtEd�. We choose Ed= ��L+�R�=0 �without
loss of generality� and take a bandwidth D=10
, 
s=1 /2

and 
t=3 /2
, where 
 is the unit of energy. The choice

t /
s=3 allows us to have an accurate control of the dis-
tance to the QPT, while the main features of the results de-
pend on this distance and not on the specific choice of pa-
rameters. For 
t /
s=3, if in addition Es=Et, the STAM can
be mapped into an OAM plus a free spin 1/2 �Ref. 8�. The
OAM has total coupling 
OAM=
 and inverted charge-
transfer energy and chemical potentials Ed

OAM−Es
OAM=Es

−Ed and ��
OAM=−��. Using this mapping it can be shown

that the densities of both models are related by �d
s���

=�d
t ���=�d

OAM�−�� /2 and the absolute value of current is the
same. From the structure of the corresponding NCA equa-
tions for both models, we realize that the NCA satisfies these
equalities. This has also been verified numerically. Further-
more, for any Ed the QPT takes place at Es=Et, when

t /
s=3.8 This defines a quantum critical line and then Es
−Et controls the distance to this line.

As explained above, for V=0 ��L=�R=0�, when Es=Et,
the singlet and triplet parts of the spectral density of the dot
2�d

s��� and 2�d
t ��� coincide with the mirror image of the

localized spectral density already reported for the Anderson
model �Fig. 5 of Ref. 17 for Et=−2
� and exhibit the usual
Kondo resonance at the Fermi level. The half width of this
peak allows to define a Kondo temperature TK. How do the
spectral densities evolve as one moves away from the quan-
tum critical surface? Decreasing Es �on the singlet side of the
QPT� �d

s��� displaces to positive frequencies, while �d
t ���

decreases and displaces its weight to negative frequencies.
As a consequence, a gap opens in the sum 
s�d

s���
+
t�d

t ��� entering Eq. �3� at low temperatures. This situation
has already been studied previously and interpreted as the
low-temperature part of a two-stage Kondo effect.6

The spectral densities for Es�Et are shown in Fig. 1. In
contrast to the previous case, �d

t ��� remains peaked at the
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Fermi energy at low temperatures. This is a consequence of
the partial Kondo effect, by which the spin 1 at the dot forms
a ground-state doublet with the conduction electrons of both
leads.14 The singlet part of the density �d

s��� displaces to
negative frequencies in this case. Therefore a pseudogap ap-
pears in the sum, 
s�d

s���+
t�d
t ���, but at finite frequencies,

in contrast to the gap at the Fermi level that develops at the
singlet side of the QPT. Note that at high temperatures both
densities are quite similar and the differentiation between
�d

s��� and �d
t ��� develops at a characteristic temperature on

the order of a fraction of Es−Et.
The equilibrium �V=0� conductance as a function of tem-

perature G�T� on the singlet side of the QPT near the quan-
tum critical line �not shown� shows a maximum at a finite
temperature and agrees with previous results using NRG
�Ref. 6� and with experiment.2 In particular, the increase and
decrease in G�T� from its maximum value are logarithmic to
a good degree of accuracy.

The differential conductance dI /dV as a function of bias
voltage on the singlet side of the transition is displayed in
Fig. 2�a�. We have applied the voltage symmetrically ��L
=−�R=eV /2�. As the temperature is lowered, a dip develops
at small voltages. The half width of the dip is on the order of
Et−Es. These results are in good agreement with the experi-
mental ones �Fig. 4c of Ref. 2�. For other parameters, in
particular larger values of Et−Es and Ed−Es �less valence
fluctuations�, we obtain curves that look similar to those re-
ported in carbon nanotubes with a flat bottom at low tem-
peratures, explained using poor man’s scaling.7 An example
is illustrated in Fig. 2�b�

The most distinct experimental results are those on the
“triplet side” of the transition �Es�Et�. As the temperature is
decreased, G�T� increases until it reaches a plateau at the
characteristic energy Es−Et and then it continues to
increase.2 This is in general, the behavior that we obtain, as

displayed in Fig. 3. As the partial contribution to the conduc-
tance for each density reveals, the plateau is due to the con-
tribution of the singlet part of the dot spectral density,
namely �d

s���, which is peaked at −�Es−Et� �see Fig. 1�. This
plateau has not been observed in previous calculations using
NRG.6 We believe that the reason for this is the lack of
resolution of NRG to describe peaks in the spectral density
out of the Fermi energy, like that of �d

s���. A clear manifes-
tation of this is a system in which the Kondo peak is split in
two out of the Fermi level.26 In fact, while NRG uses a
logarithmic frequency mesh centered at the Fermi energy, we
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FIG. 1. �Color online� Singlet �left� and triplet �right� contribu-
tions to the dot spectral density for Et=−3,Es=−2.9 and different
temperatures. The flatter curve corresponds to the highest tempera-
ture. 
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FIG. 2. Differential conductance as a function of bias voltage
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FIG. 3. �Color online� Zero-bias conductance G�T� as a function
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find that in order to obtain enough accuracy in the convolu-
tions that define �d

s��� and �d
t ���, it is necessary to use two

different dense logarithmic meshes centered at the corre-
sponding peaks.

The inset of Fig. 3 shows the evolution of the equilibrium
conductance as the system is displaced from the quantum
critical line to the triplet region. At this line, G�T� is the same
as the corresponding result for the OAM obtained using the
mapping mentioned above. In this case, a fit of G�T� using
the empirical curve is derived by fitting results of the NRG
for a spin 1/2

GE�T� =
G�0�

�1 + �21/s − 1��T/TK�2�s , �4�

with s=0.22 works very well. We could not find other re-
gions in which similar empirical curves would fit well to a
large portion of the curve. When Es increases, the degen-
eracy in the ground state is reduced and G�T� decreases in
the whole range of temperatures. However, in contrast to the
case EsEt, the conductance at zero temperature retains val-
ues near to the ideal one G0=2e2A /h due to the partial
Kondo effect.

In Fig. 4 we show the nonequilibrium differential conduc-
tance dI /dV on the triplet side at several temperatures. At
low temperatures, there is one peak centered at V=0 and

other two centered at V= �VM. This three-peak structure
also agrees qualitatively well with experiment.2 Actually in
the later, the peak at V=−VM is higher than that at V=VM,
while our results are even in V due to our assumption of a
symmetric voltage drop. Changing this we can easily control
the relative height of both peaks. In any case, the main point
is the existence of these three peaks, which is also a conse-
quence of the particular structure of the spectral densities
�d

s��� and �d
t ��� at equilibrium and low temperatures �see

Fig. 1�. The peak at V=0 is due to �d
t ���, which is peaked at

the Fermi energy. When e�V� reaches energies at which �d
s���

is peaked, this density starts to contribute significantly to the
current I �see Eq. �3�� and dI /dV increases. Finally, for large
e�V�, I tends to saturate and dI /dV decreases again.

The effect of temperature is to broaden the peaks and at
high-enough temperatures only one broad peak in dI /dV is
present, in agreement with experiment. For different param-
eters as those of Fig. 1, this broadening of the spectral den-
sities is already important at V=T=0 and increases with �V�
in such a way that even at T=0 only one peak in dI /dV is
present. This happens for example at Et=−2
 and Es−Et
=0.03
, for which dI /dV �not shown� has a monotonic be-
havior for positive V, displaying only a shoulder for eV

 � �Es−Et�.

In summary, the transport properties recently observed
near the singlet-triplet quantum phase transition in quantum
dots can be explained in the framework of the singlet-triplet
Anderson model with one channel per conduction lead, out
of equilibrium, using the noncrossing approximation. We
made use of exact results to control the distance to the quan-
tum critical point. The differential conductance dI /dV as a
function of bias voltage is markedly different at both sides of
the transition showing a dip �peak� at small voltages on the
singlet �triplet� side and often a three-peak structure on the
triplet side. The zero-bias conductance G�T� as a function of
temperature displays a plateau due to the contribution of the
excitations from the localized singlet to the doublet.
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